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Abstract

This paper presents the vibration analysis of a coupled system composed of a beam and a single-degree-of-freedom

(sdof) system. The harmonic responses of this kind of system are formulated by means of the recurrence equation method.

In addition, the natural characteristics of the system are also analyzed. Numerical examples of the undamped system are

given and compared with the published results, and an excellent correlation shows that the study work in this paper is

correct.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There are many engineering problems could be modelled as the coupled beam-sdof system, such as a motor
or engine elastically mounted on a structural element. The other applications could be seen in mechanical,
naval and ocean engineering fields. Understanding the problem clearly is very important to the further
researches such as the prediction of sound radiation from the aforementioned object. This kind of problem
and the similar subjects have been studied by many researchers in the past and several effective methods have
been developed. Wu and Lin [1] performed the vibration analysis of a uniform cantilever beam with point
masses by an analytical-and-numerical-combined method (ANCM). Wu and Chen [2] studied the free and
forced vibration of a uniform cantilever beam carrying a number of spring–damper–mass systems with
arbitrary magnitudes and locations employing ANCM. The frequency equations of a Bernoulli–Euler beam to
which several spring–mass systems are attached in span were investigated by Gürgöze [3]. Inceoğlu and
Gürgöze [4] studied the longitudinal vibrations of rods coupled by several spring-mass systems employing the
Green function method. Inceoğlu and Gürgöze [5] performed the vibration analysis of beams coupled by
several double spring–mass systems. Bambill and Rossit [6] researched the forced vibrations of a beam
elastically restrained against rotation and carrying a spring–mass system and gave many numerical examples
with different boundary conditions. The approach presented in Ref. [6] was based on the method which
divided the beam into segments from the point attached to the spring–mass system. Under the appropriate
boundary conditions, the dynamic characteristics of whole system could be obtained by solving the every
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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segment. However, this kind of method is complicated and inconvenient for the prediction of sound radiation
from this kind of system.

In this paper, a new approach is presented to analyze a coupled system which is composed of a beam and an
sdof system based on the recurrence equation method. In Sections 2 and 3, the theoretical model of this kind
of problem is developed. The vibration response of the coupled system is achieved by using the recurrence
equation method in Section 4. The natural characteristics of the whole system are studied in Section 5.
The numerical examples are given and compared with the published results [6] in Section 6. To show the
utility of the present approach, the lowest four natural frequencies and mode shapes of the coupled system
are also addressed. The recurrence equation method in this paper is firstly introduced into the area of the
vibration analysis.
2. Statement of the problem

The problem under consideration is schematically depicted in Fig. 1: a simply supported uniform beam
carrying a spring–damper–mass system at x ¼ a. A system of Cartesian coordinates ðx; yÞ is used to define the
position of points of the system. A harmonic excitation Fe�jot is applied to the mass block, where m, c and k

are the mass, damping coefficient and stiffness of the sdof system, respectively. u1 represents the displacement
of the mass block and u2 represents the displacement of the attaching point (i.e. the displacement of the beam
at x ¼ a). Fae

�jot denotes the transmission excitation owing to the sdof system. L is the length of the beam. It
is noted that the vibration response of this coupled system could be solved by combining the equations of
motion of the beam and sdof system together and by using the recurrence equation method.
3. Model development

According to the classical theory of Bernoulli–Euler beam, the transverse vibration equation of motion of
the beam is well known as

EJ
q4yðx; tÞ
qx4

þ rA
q2yðx; tÞ

qt2
¼ Fae

�jotdðx� aÞ, (1)

where E, A, J and r are Young’s modulus, the cross–sectional area of the beam, the moment of inertial and
the density of the beam material, respectively. d is the Dirac–delta distribution function. yðx; tÞ denotes the
transverse deflection of the beam.

Assuming yðx; tÞ ¼ Y ðxÞe�jot , for the simply supported beam, the steady–state response of the beam under
harmonic excitation can be written as [7]

Y ðxÞ ¼
�2F a

rAL

X1
n¼1

sinðnpa=LÞ sinðnpx=LÞ

o2 � o2
n

, (2)
y

x

a

c k

Fe− jwt

Fae   − jwt

u1

u2

o

m

Fig. 1. Coupled beam-sdof system and coordinate system.



ARTICLE IN PRESS
H.B. Tang et al. / Journal of Sound and Vibration 311 (2008) 912–923914
where on is the nth natural frequency of the bare beam (i.e. the beam without the sdof system),
on ¼ n2p2=L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=rA

p
.

Subsequently, we will study the response of the whole system. One can get the differential equation of
motion of the spring–damper–mass system as follows:

m €u1 þ cð _u1 � _u2Þ þ kðu1 � u2Þ ¼ Fe�jot. (3)

Let u ¼ u1 � u2, one can get

m €uþ c _uþ ku ¼ Fe�jot �m €u2. (4)

Because u2 ¼ Y ðaÞe�jot, solving Eq. (4), one can obtain

u ¼
F þmo2Y ðaÞ

k �mo2 � joc
e�jot. (5)

According to the force equilibrium of F ae
�jot ¼ kuþ c _u , the harmonic excitation can be expressed as

Fa ¼
F þmo2Y ðaÞ

k �mo2 � joc
ðk � jocÞ. (6)

It can be seen that Eqs. (2) and (6) are coupled. Consequently, it is difficult to solve Eqs. (2) and (6)
simultaneously in general ways. Because of the essential feedback effect, this kind of problem can be solved by
means of the recurrence equation method.

4. Solving the response

In this section, we will solve the response of the coupled system by using the recurrence equation method.
From Eq. (2), the transverse deflection of the beam at x ¼ a is given by

Y ðaÞ ¼
�2F a

rAL

X1
n¼1

sin2ðnpa=LÞ

o2 � o2
n

. (7)

Inserting Eq. (6) into Eq. (7), one can obtain the recurrence equation as

Y sþ1ðaÞ ¼
mo2Y sðaÞ þ F

k �mo2 � joc
ðk � jocÞ

� �
�2

rAL

X1
n¼1

sin2ðnpa=LÞ

o2 � o2
n

 !
, (8)

where s is the times of recurrence.
Eq. (8) can be rewritten in the form of

Y sþ1ðaÞ ¼ DðGY sðaÞ þ FHÞ, (9)

where

D ¼
1

c2o2 þ ðk �mo2Þ
2

�2

rAL

X1
n¼1

sin2ðnpa=LÞ

o2 � o2
n

, ð10Þ

G ¼ k2mo2 þ c2mo4 � km2o4 þ jcm2o5, ð11Þ

H ¼ k2
þ c2o2 � kmo2 þ jcmo3. ð12Þ

Solving Eq. (9) gives

Y sðaÞ ¼ �
FHDð1� ðGDÞsÞ

GD� 1
, (13)

where Y 0ðaÞ ¼ 0 , which is the initial condition of the system at t ¼ 0.
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The main interest is focused on the steady–state response, so the final transverse deflection of the beam at
x ¼ a can be expressed as

Y ðaÞ ¼ lim
s!1
�

FHDð1� ðGDÞsÞ

GD� 1
. (14)

When jGDj41, Y ðaÞ will diverge obviously. For the case GD ¼ 1, the physical meanings will be studied in the
following section. When jGDjo1, one can obtain the converged solution as

Y ðaÞ ¼ �
FHD

GD� 1
. (15)

Combining Eq. (15) with Eqs. (2) and (6) gives

Y ðxÞ ¼
FH=ð1� GDÞ

c2o2 þ ðk �mo2Þ
2

�2

rAL

X1
n¼1

sinðnpa=LÞ sinðnpx=LÞ

o2 � o2
n

. (16)

Eq. (16) is the analytical solution of transverse amplitudes for a uniform beam carrying a spring–damper–mass
system in the steady–state situation.

For the undamped system, the transverse deflection of the attaching point is given by

Y ðaÞ ¼
F

mo2

�C

C � 1
, (17)

where

C ¼
1

ð1=kÞ � ð1=mo2Þ

2

rAL

X1
n¼1

sin2ðnpa=LÞ

o2 � o2
n

. (18)

Substituting Eq. (17) into Eqs. (2) and (6) gives

Y ðxÞ ¼
ðF=mo2Þð1=C � 1Þ

ð1=kÞ � ð1=mo2Þ

�2

rAL

X1
n¼1

sinðnpa=LÞ sinðnpx=LÞ

o2 � o2
n

. (19)

Eq. (19) is the analytical solution of the undamped system. Compared with undamped system, the amplitudes
of the damped system (see Eq. (16)) are complex values.
5. Natural characteristics of the whole system

Next, the natural characteristics of the whole system are analyzed. From Eq. (9), let F ¼ 0 one can obtain
the recurrence equation as

Y sþ1ðaÞ ¼ GDY sðaÞ. (20)

Solving Eq. (20) gives

Y sðaÞ ¼ ðGDÞse, (21)

where e is the initial deflection of the attaching point and ea0.
For the purpose of keeping the state of vibration, it must be satisfied of

GD ¼ 1. (22)

Solving Eq. (22), the lth natural frequency ōl of the whole system can be achieved. Substituting Eq. (22) into
Eq. (21), one obtains

Y ðaÞ ¼ e. (23)
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Combining Eq. (23) with Eqs. (2) and (6), let F ¼ 0, e ¼ 1 and o ¼ ōl , the mode shapes can be expressed as

Y lðxÞ ¼
k2mō2

l þ c2mō4
l � km2ō4

l þ jcm2ō5
l

c2ō2
l þ ðk �mō2

l Þ
2

�2

rALX1
n¼1

sinðnpa=LÞ sinðnpx=LÞ

ō2
l � o2

n

; l ¼ 1; 2; � � � . ð24Þ

Following the same way, solving the equation of (see Eq. (18))

C ¼ 1, (25)

the lth natural frequency ōl of the undamped system can be reached. And the corresponding mode shapes of
the undamped system can be given by

Y lðxÞ ¼
1

ð1=kÞ � ð1=mō2
l Þ

2

rAL

X1
n¼1

sinðnpa=LÞ sinðnpx=LÞ

ō2
l � o2

n

; l ¼ 1; 2; � � � . (26)
Table 1

The dimensionless vibration amplitude values of EJY ðxÞ=FL3 when M ¼ 1 and K ¼ 1

a=L x EJY ðxÞ=FL3

ðō1=o1Þ o=o1

0.10 0.30 0.50 0.70 0.90 1.10 1.30

0.1 0 0 0 0 0 0 0 0

(0.101184) 0.1 0.1169530 �0.0003717 �0.0001434 �0.0000980 �0.0001407 0.0000739 0.0000125

0.2 0.2022860 �0.0006468 �0.0002527 �0.0001762 �0.0002616 0.0001447 0.0000268

0.3 0.2530570 �0.0008143 �0.0003224 �0.0002298 �0.0003523 0.0002044 0.0000407

0.4 0.2735040 �0.0008854 �0.0003550 �0.0002579 �0.0004068 0.0002454 0.0000516

0.5 0.2678940 �0.0008719 �0.0003534 �0.0002612 �0.0004216 0.0002623 0.0000574

0.6 0.2405170 �0.0007864 �0.0003216 �0.0002410 �0.0003965 0.0002527 0.0000570

0.7 0.1956910 �0.0006421 �0.0002646 �0.0002004 �0.0003344 0.0002169 0.0000499

0.8 0.1377540 �0.0004532 �0.0001877 �0.0001433 �0.0002416 0.0001586 0.0000370

0.9 0.0710666 �0.0002348 �0.0000973 �0.0000746 �0.0001266 0.0000837 0.0000197

1 0 0 0 0 0 0 0

0.3 0 0 0 0 0 0 0 0

(0.100578) 0.1 0.5137730 �0.0008024 �0.0003172 �0.0002245 �0.0003321 0.0002163 0.0000414

0.2 0.9659820 �0.0015098 �0.0005978 �0.0004242 �0.0006299 0.0004128 0.0000797

0.3 1.2951100 �0.0020279 �0.0008060 �0.0005754 �0.0008620 0.0005721 0.0001125

0.4 1.4543000 �0.0022848 �0.0009142 �0.0006597 �0.0010036 0.0006802 0.0001376

0.5 1.4549700 �0.0022944 �0.0009251 �0.0006755 �0.0010446 0.0007235 0.0001506

0.6 1.3232800 �0.0020940 �0.0008503 �0.0006276 �0.0009847 0.0006949 0.0001480

0.7 1.0854900 �0.0017228 �0.0007037 �0.0005239 �0.0008318 0.0005958 0.0001292

0.8 0.7679920 �0.0012215 �0.0005011 �0.0003755 �0.0006013 0.0004352 0.0000956

0.9 0.3973040 �0.0006328 �0.0002603 �0.0001958 �0.0003152 0.0002296 0.0000508

1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

(0.100270) 0.1 1.1512400 �0.0008527 �0.0003447 �0.0002520 �0.0003842 0.0002884 0.0000591

0.2 2.2089500 �0.0016350 �0.0006599 �0.0004814 �0.0007320 0.0005476 0.0001117

0.3 3.0796800 �0.0022772 �0.0009172 �0.0006670 �0.0010100 0.0007517 0.0001523

0.4 3.6702300 �0.0027109 �0.0010895 �0.0007896 �0.0011904 0.0008811 0.0001773

0.5 3.8876700 �0.0028698 �0.0011520 �0.0008335 �0.0012535 0.0009249 0.0001855

0.6 3.6702300 �0.0027109 �0.0010895 �0.0007896 �0.0011904 0.0008811 0.0001773

0.7 3.0796800 �0.0022771 �0.0009172 �0.0006670 �0.0010100 0.0007517 0.0001523

0.8 2.2089500 �0.0016350 �0.0006599 �0.0004814 �0.0007320 0.0005476 0.0001117

0.9 1.1512400 �0.0008527 �0.0003447 �0.0002520 �0.0003842 0.0002884 0.0000591

1 0 0 0 0 0 0 0
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Table 2

The dimensionless vibration amplitude values of EJY ðxÞ=FL3 when M ¼ 0:1 and K ¼ 2

a=L x EJY ðxÞ=FL3

ðō1=o1Þ o=o1

0.10 0.30 0.50 0.70 0.90 1.10 1.30

0.1 0 0 0 0 0 0 0 0

(0.451675) 0.1 0.0028602 0.0051807 �0.0148856 �0.0032652 �0.0036551 0.0017857 0.0002842

0.2 0.0049471 0.0090138 �0.0262259 �0.0058742 �0.0067950 0.0034971 0.0006083

0.3 0.0061887 0.0113484 �0.0334625 �0.0076593 �0.0091524 0.0049418 0.0009244

0.4 0.0066888 0.0123393 �0.0368378 �0.0085985 �0.0105678 0.0059332 0.0011713

0.5 0.0065516 0.0121512 �0.0366738 �0.0087054 �0.0109524 0.0063421 0.0013029

0.6 0.0058820 0.0109592 �0.0333808 �0.0080344 �0.0102995 0.0061082 0.0012922

0.7 0.0047858 0.0089492 �0.0274572 �0.0066806 �0.0086876 0.0052444 0.0011331

0.8 0.0033689 0.0063165 �0.0194816 �0.0047769 �0.0062750 0.0038347 0.0008404

0.9 0.0017380 0.0032639 �0.0100987 �0.0024878 �0.0032876 0.0020235 0.0004471

1 0 0 0 0 0 0 0

0.3 0 0 0 0 0 0 0 0

(0.445164) 0.1 0.0061964 0.0115871 �0.0285810 �0.0071044 �0.0078993 0.0056998 0.0009596

0.2 0.0116503 0.0218023 �0.0538638 �0.0134241 �0.0149856 0.0108769 0.0018473

0.3 0.0156198 0.0292835 �0.0726188 �0.0182077 �0.0205069 0.0150744 0.0026071

0.4 0.0175396 0.0329920 �0.0823750 �0.0208764 �0.0238750 0.0179220 0.0031887

0.5 0.0175478 0.0331313 �0.0833564 �0.0213757 �0.0248504 0.0190637 0.0034883

0.6 0.0159595 0.0302379 �0.0766146 �0.0198587 �0.0234262 0.0183114 0.0034296

0.7 0.0130916 0.0248768 �0.0634009 �0.0165788 �0.0197885 0.0156978 0.0029928

0.8 0.0092624 0.0176391 �0.0451507 �0.0118832 �0.0143053 0.0114680 0.0022137

0.9 0.0047917 0.0091375 �0.0234517 �0.0061966 �0.0074982 0.0060489 0.0011762

1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

(0.441859) 0.1 0.0065639 0.0125439 �0.0290542 �0.0077597 �0.0087401 0.0081170 0.0013900

0.2 0.0125944 0.0240515 �0.0556295 �0.0148260 �0.0166523 0.0154111 0.0026282

0.3 0.0175590 0.0334975 �0.0773168 �0.0205419 �0.0229766 0.0211538 0.0035851

0.4 0.0209260 0.0398773 �0.0918404 �0.0243201 �0.0270823 0.0247947 0.0041737

0.5 0.0221658 0.0422151 �0.0971102 �0.0256699 �0.0285170 0.0260290 0.0043653

0.6 0.0209260 0.0398773 �0.0918404 �0.0243201 �0.0270823 0.0247947 0.0041737

0.7 0.0175590 0.0334975 �0.0773168 �0.0205419 �0.0229766 0.0211538 0.0035851

0.8 0.0125944 0.0240515 �0.0556295 �0.0148260 �0.0166523 0.0154111 0.0026282

0.9 0.0065639 0.0125439 �0.0290542 �0.0077597 �0.0087401 0.0081170 0.0013900

1 0 0 0 0 0 0 0
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6. Numerical results

This section is devoted to the numerical evaluations of the formulae established in the preceding sections. At
the beginning of, the numerical examples of the undamped system are given in order to compare with the
results available in literature [6]. The geometrical and mechanical parameter values of the coupled system are
as follows: L ¼ 1:0m, EJ ¼ 6� 104 Nm2 and rA ¼ 15 kg=m.

The dimensionless parameters of M and K are employed in the following study where M ¼ m=rAL and
K ¼ kL3=EJ . For the sake of brevity, the dimensionless vibration amplitude EJY ðxÞ=FL3 is introduced.
In Tables 1–4, the values of ō1=o1 are indicated, where ō1 and o1 are the fundamental natural frequency of
the coupled beam and the bare beam respectively.

Tables 1 and 2 show the values of EJY ðxÞ=FL3 when M ¼ 1, K ¼ 1 and M ¼ 0:1, K ¼ 2 respectively.
Tables 3 and 4 are cited in Ref. [6]. Compared with Tables 1–4, it is noted that the agreements between
Tables 1 and 3 and Tables 2 and 4 are excellent. The comparison shows the study work in this paper is correct.
Also it is noticed that the value is �0:0148856 in Table 2 when a=L ¼ 0:1 and o=o1 ¼ 0:5 , and its counterpart
in Table 4 is 0.1488573. The authors think that this is a slip of the pen in Ref. [6].
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Table 3

The dimensionless vibration amplitude values of EJY ðxÞ=FL3 when M ¼ 1 and K ¼ 1 (cited in Ref. [6])

a=L x EJY ðxÞ=FL3

ðō1=o1Þ o=o1

0.10 0.30 0.50 0.70 0.90 1.10 1.30

0.1 0 0 0 0 0 0 0 0

(0.10118) 0.1 0.1169460 0.0003717 0.0001434 0.0000980 0.0001407 0.0000739 0.0000125

0.2 0.2022750 0.0006468 0.0002527 0.0001762 0.0002616 0.0001447 0.0000268

0.3 0.2530430 0.0008143 0.0003224 0.0002298 0.0003523 0.0002044 0.0000408

0.4 0.2734890 0.0008854 0.0003550 0.0002580 0.0004068 0.0002454 0.0000516

0.5 0.2678790 0.0008719 0.0003534 0.0002612 0.0004216 0.0002623 0.0000574

0.6 0.2405040 0.0007864 0.0003216 0.0002410 0.0003965 0.0002527 0.0000570

0.7 0.1956800 0.0006421 0.0002646 0.0002004 0.0003344 0.0002169 0.0000500

0.8 0.1377470 0.0004532 0.0001877 0.0001433 0.0002416 0.0001586 0.0000370

0.9 0.0710626 0.0002342 0.0000973 0.0000746 0.0001266 0.0000837 0.0000197

1 0 0 0 0 0 0 0

0.3 0 0 0 0 0 0 0 0

(0.10058) 0.1 0.5137140 0.0008024 0.0003172 0.0002245 0.0003321 0.0002163 0.0000414

0.2 0.9658730 0.0015098 0.0005978 0.0004242 0.0006299 0.0004128 0.0000797

0.3 1.2949700 0.0020279 0.0008060 0.0005754 0.0008620 0.0005721 0.0001125

0.4 1.4541300 0.0022848 0.0009143 0.0006597 0.0010036 0.0006802 0.0001376

0.5 1.4548100 0.0022944 0.0009251 0.0006755 0.0010446 0.0007235 0.0001506

0.6 1.3231300 0.0020940 0.0008503 0.0006276 0.0009847 0.0006950 0.0001480

0.7 1.0853600 0.0017228 0.0007037 0.0005239 0.0008318 0.0005958 0.0001292

0.8 1.0853600 0.0012215 0.0005011 0.0003755 0.0006013 0.0004352 0.0000956

0.9 0.3972590 0.0006328 0.0002603 0.0001958 0.0003152 0.0002296 0.0000508

1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

(0.10027) 0.1 1.1509700 0.0008527 0.0003447 0.0002520 0.0003842 0.0002884 0.0000591

0.2 2.2084200 0.0016350 0.0006599 0.0004814 0.0007320 0.0005476 0.0001117

0.3 3.0789400 0.0022772 0.0009172 0.0006670 0.0010100 0.0007517 0.0001523

0.4 3.6693500 0.0027109 0.0010895 0.0007896 0.0011904 0.0008811 0.0001773

0.5 3.8867400 0.0028698 0.0011520 0.0008335 0.0012535 0.0009249 0.0001855

0.6 3.6693500 0.0027109 0.0010895 0.0007896 0.0011904 0.0008811 0.0001773

0.7 3.0789400 0.0022772 0.0009172 0.0006670 0.0010100 0.0007517 0.0001523

0.8 2.2084200 0.0016350 0.0006599 0.0004814 0.0007320 0.0005476 0.0001117

0.9 1.1509700 0.0008527 0.0003447 0.0002520 0.0003842 0.0002884 0.0000591

1 0 0 0 0 0 0 0

H.B. Tang et al. / Journal of Sound and Vibration 311 (2008) 912–923918
The dimensionless vibration amplitudes of the whole system are plotted for different M, K , o and x (x is the
damping ratio, x ¼ c=ð2

ffiffiffiffiffiffiffi
mk
p
Þ) at x=L ¼ 0:5 depending on Eq. (16), which are shown in Figs. 2–5, respectively.

In Fig. 2, the amplitude curves are shown when M is varying from 0 to 1. Note that there are peaks when M is
around 0.2. Fig. 3 shows the amplitude versus K when M, x, o and a=L are fixed. Also there are peaks
when K is close to 0.5. In the two cases, it can be supposed that the position of the peak is little dependent of
a=L, which is a meaningful conclusion for the vibration analysis of this kind of model. The
amplitude–frequency responses in the frequency range 0� 2000 rad=s are illustrated in Fig. 4, where two
resonant peaks (i.e. o ¼ 175 and 623 rad=s) are present clearly. In the identical situation, the corresponding
natural frequencies derived from Eq. (22) are 174:63 and 623:26 rad=s when a=L ¼ 0:5, which are in agreement
with the resonant frequencies shown in Fig. 4. Further, it can be seen in Fig. 5 that the amplitudes and
damping ratio vary reversely. From the viewpoint of vibration control, this peak values mentioned before
should be avoided.

Figs. 6–9 show the lowest four mode shapes of the undamped system when M ¼ 0:1 and K ¼ 2. It can be
seen that the first mode shapes in Fig. 6 are similar with the second ones in Fig. 7. Meanwhile,
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Table 4

The dimensionless vibration amplitude values of EJY ðxÞ=FL3 when M ¼ 0:1 and K ¼ 2 (cited in Ref. [6])

a=L x EJY ðxÞ=FL3

ðō1=o1Þ o=o1

0.10 0.30 0.50 0.70 0.90 1.10 1.30

0.1 0 0 0 0 0 0 0 0

(0.45167) 0.1 0.0028602 0.0051807 0.1488573 0.0032652 0.0036551 0.0017857 0.0002842

0.2 0.0049471 0.0090138 0.0262260 0.0058742 0.0067949 0.0034971 0.0006083

0.3 0.0061887 0.0113484 0.0334628 0.0076593 0.0091524 0.0049418 0.0009244

0.4 0.0066888 0.0123393 0.0368381 0.0085985 0.0105677 0.0059332 0.0011713

0.5 0.0065516 0.0121511 0.0366740 0.0087054 0.0109523 0.0063422 0.0013029

0.6 0.0058820 0.0109592 0.0333810 0.0080344 0.0102995 0.0061082 0.0012922

0.7 0.0047858 0.0089492 0.0274574 0.0066806 0.0086876 0.0052444 0.0011331

0.8 0.0033689 0.0063164 0.0194817 0.0047769 0.0062750 0.0038347 0.0008404

0.9 0.0017380 0.0032639 0.0100988 0.0024878 0.0032876 0.0020236 0.0004471

1 0 0 0 0 0 0 0

0.3 0 0 0 0 0 0 0 0

(0.44516) 0.1 0.0061964 0.0115871 0.0285811 0.0071044 0.0078993 0.0056999 0.0009596

0.2 0.0116503 0.0218022 0.0538642 0.0134241 0.0149855 0.0108770 0.0018473

0.3 0.0156198 0.0292835 0.0726192 0.0182077 0.0205068 0.0150746 0.0026071

0.4 0.0175396 0.0329920 0.0823754 0.0208765 0.0238749 0.0179222 0.0031887

0.5 0.0175478 0.0331313 0.0833569 0.0213757 0.0248503 0.0190639 0.0034883

0.6 0.0159595 0.0302379 0.0766150 0.0198587 0.0234261 0.0183116 0.0034296

0.7 0.0130916 0.0248767 0.0634013 0.0165788 0.0197885 0.0156980 0.0029929

0.8 0.0092624 0.0176390 0.0451510 0.0118832 0.0143052 0.0114682 0.0022137

0.9 0.0047917 0.0091375 0.0234518 0.0061966 0.0074981 0.0060489 0.0011762

1 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

(0.44186) 0.1 0.0065639 0.0125439 0.0290543 0.0077597 0.0087401 0.0081171 0.0013900

0.2 0.0125944 0.0240515 0.0556298 0.0148260 0.0166523 0.0154113 0.0026282

0.3 0.0175590 0.0334975 0.0773172 0.0205419 0.0229766 0.0211540 0.0035851

0.4 0.0209260 0.0398772 0.0918409 0.0243201 0.0270822 0.0247950 0.0041738

0.5 0.0221658 0.0422150 0.0971107 0.0256699 0.0285169 0.0260293 0.0043653

0.6 0.0209260 0.0398772 0.0918409 0.0243201 0.0270822 0.0247950 0.0041738

0.7 0.0175590 0.0334975 0.0773172 0.0205419 0.0229766 0.0211540 0.0035851

0.8 0.0125944 0.0240515 0.0556298 0.0148260 0.0166523 0.0154113 0.0026282

0.9 0.0065639 0.0125439 0.0290543 0.0077597 0.0087401 0.0081171 0.0013900

1 0 0 0 0 0 0 0
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the corresponding ō1 and ō2 are close to the natural frequency of the pure sdof system (only spring and mass)
and the first natural frequency of the bare beam, respectively. This case suggests that the first mode
of the coupled system is caused by the sdof system, and the other modes are similar with the ones of the
bare beam.

In Fig. 8, it is noticed that a mode shape is absent and substituted by the next one when a=L ¼ 0:5.
Although the coupled system is a symmetric structure in the case, the anti-symmetric modes should still exist.
Therefore the presented method would be further researched to explain the phenomenon.

7. Conclusions

In this paper, a theoretical model is developed to predict the vibration response of the coupled beam-sdof
system. The transverse vibration expressions of this kind of system are formulated by using the recurrence
equation method. Based on the recurrence equation, the natural frequencies and the corresponding mode
shapes of the coupled system are also addressed. In addition, numerical examples of the undamped system are
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Fig. 2. EJY ðxÞ=FL3 versus M at x ¼ 0:5, where K ¼ 1, o=o1 ¼ 0:2 and x ¼ 0:5.
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Fig. 3. EJY ðxÞ=FL3 versus K at x ¼ 0:5, where M ¼ 0:1, o=o1 ¼ 0:2 and x ¼ 0:5.
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Fig. 4. EJY ðxÞ=FL3 versus o at x ¼ 0:5, where M ¼ 0:1, K ¼ 1 and x ¼ 0:5.
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Fig. 5. EJY ðxÞ=FL3 versus x at x ¼ 0:5, where M ¼ 0:1, o=o1 ¼ 0:2 and K ¼ 1.
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Fig. 6. The 1st mode shapes where M ¼ 0:1 and K ¼ 2(ō1 ¼ 281:94, 277:88 and 275:81 rad=s when a=L ¼ 0:1, 0:3 and 0:5, respectively).
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Fig. 7. The 2nd mode shapes where M ¼ 0:1 and K ¼ 2(ō2 ¼ 625:74, 634:56 and 639:93 rad=s when a=L ¼ 0:1, 0:3 and 0:5, respectively).
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Fig. 8. The 3rd mode shapes where M ¼ 0:1 and K ¼ 2(ō3 ¼ 2497:95, 2499:77 and 5619:31 rad=s when a=L ¼ 0:1, 0:3 and 0:5,
respectively).
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Fig. 9. The 4th mode shapes where M ¼ 0:1 and K ¼ 2(ō4 ¼ 5618:81, 5618:01 and 15605:73 rad=s when a=L ¼ 0:1, 0:3 and 0:5,
respectively).
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given and compared with the published results. The agreement is excellent which shows the study work in this
paper is correct. Subsequently, the parametric influence analyses for the coupled system are presented.
To show the utility of the present approach, the lowest four natural frequencies and mode shapes of the
coupled system are calculated. The theory and model in this paper is an attempt in order to introduce
the recurrence equation method into the field of vibration analysis and achieve the preliminary study for the
prediction of sound radiation from the coupled system. The absence of anti-symmetric modes for the
symmetric system as well as the vibration analysis of the beam-sdof system with other boundary conditions
will be investigated in the future work.
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